APPENDIX D: # STEM CELL TABLES ### COMPENDIUM OF SCIENTIFIC PUBLICATIONS REGARDING THE ISOLATION AND CHARACTERIZATION OF STEM CELLS The following tables provide an overview of information about stem cells that have been derived from mice and humans. The tables summarize published research that characterizes cells that are capable of developing into cells of multiple germ layers (i.e., multipotent or pluripotent) or that can generate the differentiated cell types of another tissue (i.e., plasticity) such as a bone marrow cell becoming a neuronal cell. The tables do not include information about cells considered progenitor ore precursor cells or those that can proliferate without the demonstrated ability to generate cell types of other tissues. The tables list the tissue from which the cells were derived, the types of cells that developed, the conditions under which differentiation occurred, the methods by which the cells were characterized, and the primary references for the information. | O
Tissue | rigin
Cell Type | Cell Types
Developed | Differentiation
Conditions | Methods of
Characterization | Reference | |----------------|----------------------------------|--|---|--|--| | Bone
marrow | Hematopoietic
stem cell (HSC) | Cardiac muscle | Cardiac injury induced in
mice
Injected labeled HSCs
into injured heart | Measurement of green fluorescent protein (GFP) in regenerating cardiac cells Measurement of cardiac-specific protein and gene expression Cardiac-function tests | Orlic et al.,
2001 | | | HSC | Epithelial cells of
the liver, skin, lung,
esophagus,
stomach, small
and large intestine | Transplantation of HSCs into lethally irradiated female mice | Detection of antibodies
to cellular and cell-
surface proteins
Cell staining
Probing for Y chromo-
some-positive cells | Krause et al.,
2001 | | | HSC | Cholangiocyte
Hepatocyte | Purification of HSCs from
bone marrow
Transplantation of HSCs
into mice with liver-
enzyme deficiency | Observation of normalized liver function and regenerating hepatocytes Measurement of expression of hematopoietic and hepatic cell-surface proteins | Lagasse et al.,
2000 | | | HSC | Platelet
Red blood cell
White blood cell | Hematopoietic growth factors: interleukin-3, interleukin-6, granulocyte-colony stimulating factor, erythropoietin, and thrombopoietin | Detection of antibodies
to cell-surface proteins
Colony-forming assays
Immunophenotyping | Spangrude
et al., 1991
Morrison et al.,
1995 | | | HSC
Side population
(SP) | Skeletal muscle | Lethal irradiation of
female mice
Induced muscle injury
Purified bone marrow
transplanted into mice | Measurement of
dystrophin expression in
regenerating muscle cells
Fluorescence-activated
cell sorting (FACS)
Probing for Y chromo-
some-positive cells | Gussoni et al.,
1999 | | | Mesenchymal
stem cell (MSC) | Adipocyte
Chondrocyte
Osteoblast
Tenocyte | Dexamethasone
Vitamin D₃
Bone morphogenetic
protein-2 (BMP-2) | Detection of antibody
binding to cell-surface
proteins
Immunofluorescence | Friedenstein et
al., 1976
Pereira et al.,
1995
Prockop, 1997 | | Ori
Tissue | gin
Cell Type | Cell Types
Developed | Differentiation
Conditions | Methods of
Characterization | Reference | |---------------------------|-------------------|---|--|--|---| | Bone
marrow
(cont.) | MSC | Astrocyte
Neuron | Injection of MSC
into brain of
immunocompromised
neonatal mice | Detection of cell-surface
markers by using
antibodies and
immunofluorescence | Kopen et al.,
1999 | | | MSC | Astrocyte
Neuron | Epidermal growth factor Brain-derived neurotrophic factor B-mercaptoethanol Retinoic acid | Immunofluorescence
Cell sorting | Sanchez-Ramos
et al., 2000 | | | MSC | Neuron | Stromal cells expanded as undifferentiated cells B-mercaptoethanol Butylated hydroxyanisole | Detection of numerous
neuron-specific proteins
via staining | Woodbury et
al., 2000 | | | MSC | Skeletal muscle | 5-azacytidine and amphotericin B | Observation of myotubes
Staining for myocytes | Wakitani et al.,
1995 | | | MSC and/or
HSC | Astrocyte
Microglia
Oligodendrocyte | Induced injury to neural
tissue
Bone marrow
transplantation | Detection of antibodies
to cell-surface proteins | Eglitis and
Mezey, 1997 | | | MSC and/or
HSC | Cardiac muscle | Bone marrow transplantation of 5-azacytidinetreated cells into mice with induced cardiac muscle injury | Cell staining for cardiac muscle proteins Measurement of blood pressure Electron microscopy Observation of beating cells in vitro Measurement of atrial natriuretic peptide Staining cells for muscle proteins | Tomita et al.,
1999
Makino et al.,
1999 | | | MSC and/or
HSC | Hepatocyte | Suppression of liver cell proliferation Induced injury to liver Bone marrow transplantation | Staining cells Antibody labeling of cell- surface markers | Taniguchi et al.,
1996
Petersen et al.,
1999
Theise et al.,
2000 | | Ori
Tissue | gin
Cell Type | Cell Types
Developed | Differentiation
Conditions | Methods of
Characterization | Reference | |---------------------------|---|---|--|--|--| | Bone
marrow
(cont.) | MSC and/or
HSC | Neuron | Induced neural tissue injury Bone marrow transplantation into female mice | Detection of antibodies
to cell-surface proteins
Probing for Y
chromosome-containing
neurons | Mezey et al.,
2000
Brazelton et al.,
2000 | | | MSC, HSC, or
side population
(SP) | Cardiac muscle
Skeletal muscle | Lethal irradiation of mice
Bone marrow
transplantation from
normal male donor mice
into mice with induced
muscle degeneration | Probing for Y
chromosome-containing
muscle cells
Detection of expression
of myoregulatory proteins | Bittner et al.,
1999 | | | MSC, HSC, or SP | Skeletal muscle | Induced muscle tissue injury Transplantation of genetically marked bone marrow into immunodeficient mice | Histologic observation of
muscle regeneration
Detection of antibodies
to cell-surface proteins
Myogenic differentiation
factor transcript
expression | Ferrari et al.,
1998 | | | SP | Cardiomyocyte
Vascular
endothelia | Transplanted into lethally irradiated mice with ischemic damage to cardiac tissue | Immunohistochemistry
Staining for
cardiomyocte marker
(alpha-actin) and
endothelial marker (flt-1) | Jackson et al.,
2001 | | Brain | Neural stem
cell (NSC) | Astrocyte
Neuron
Oligodendrocyte | Basic fibroblast growth
factor
Epidermal growth factor | Detection of antibodies
to neural cell-specific
proteins | Reynolds et al.,
1996
Doetsch et al.,
1999
Johansson et
al., 1999 | | | NSC | Red blood cell
White blood cell | Transplantation of NSC into irradiated mice | Flow cytometry analysis
Genetic labeling assay
Detection of antibodies
to cell surface proteins | Bjornson et al.,
1999 | | Or
Tissue | igin
Cell Type | Cell Types
Developed | Differentiation
Conditions | Methods of
Characterization | Reference | |---|------------------------|---|--|---|---| | Brain
(cont.) | NSC | Skeletal muscle | Transplantation of NSCs into mice In vitro co-culture with myogenic cells | Observation of differentiated skeletal muscle cells Analysis of muscle cell-specific proteins and gene expression | Galli et al.,
2000 | | Embryo-
blastocyst
inner-cell
mass | Embryonic
stem (ES) | Adipocyte | Retinoic acid
Insulin, T3 (thyroid
hormone), and Leukemia
inhibitory factor (LIF) | Observation of adipocyte differentiation Measurement of adipocyte enzyme activity Measurement of adipocyte-specific gene expression | Dani et al.,
1997 | | | ES | Astrocyte Glial precursor Oligodendrocyte | Cells cultured in neurogenic medium with basic fibroblast growth factor Epidermal growth factor Platelet-derived growth factor
Transplanted glial precursor cells into myelin-deficient mice | Observation of spinal
cord remyelination
Electron microscopy
Antibodies to neural cell-
specific proteins | Brustle et al.,
1999 | | | ES | Astrocyte Midbrain neuron Neural precursor Neuron Oligodendrocyte | Retinoic acid Cell selection through transgene conferring drug resistance Co-culture with stromal cells | Examination of cell
morphology and neuron-
specific markers
Cell-specific markers
Detection of dopamine
production | Bain et al.,
1995
Strubing et al.,
1995
Li et al., 1998
Lee et al., 2000
Kawasaki et al.,
2000 | | | ES | Astrocyte Neuron Oligodendro- cyte | Retinoic acid | Observation of functional synapses Measurement of neurotransmitters | Slager, et al.,
1993
Gottlieb, et al.,
1999 | | | ES | Astrocyte
Oligodendrocyte | Retinoic acid Fetal calf serum (10%) B-mercaptoethanol | Antibodies to neural cell-
specific proteins
Cytochemistry | Fraichard et al.,
1995 | | Ori
Tissue | igin
Cell Type | Cell Types Developed | Differentiation
Conditions | Methods of Characterization | Reference | |--|-------------------|--|--|---|--| | Embryo-
blastocyst
inner-cell
mass
(cont.) | ES ES | Cardiac muscle
Skeletal muscle
Smooth muscle | Retinoic acid Dimethyl sulfoxide Transplantation of muscle cells into mice | Histology Detection of cell-specific proteins Cytochemistry | Dinsmore et al.,
1996 | | | ES | Cardiomyocyte | LIF, retinoic acid
Fibroblast feeder cells | Histology and observation of beating cardiomyocyte Detection of specific cardiac cell-gene expression and cardiomyocyte surface proteins | Doetschman et
al., 1985
Maltsev et al.,
1993
Wobus et al.,
1995 | | | ES | Cardiomyocyte | Cell selection through
genetic labeling of ES
Injection of ES into
mouse heart | Detection of genetically
labeled cardiomyocytes
Electrophysiological
studies | Bader et al.,
2000 | | | ES | Cardiomyocyte | LIF Purification of cardiomyocytes from ES culture by genetic labeling and selection | Observation of functional cardiomyocyte grafts in heart Immunohistology | Klug et al.,
1996 | | | ES | Cardiomyocyte | Culture of ES with LIF Selection of cardiomyocytes through genetic labeling Injection of cardiomyocytes into mouse heart | Microscopy and cell-
receptor studies Observation of cardiomyocyte differentiation and contractility Analysis of cardiomyocyte gene expression | Westfall et al.,
1997 | | | ES | Chondrocyte
(cartilage-forming
cell) | BMP-2 and BMP-4 | Staining of mature
chondrocytes
Measurement of
chondrocyte-specific
gene expression and
proteins | Kramer et al.,
2000 | | Or
Tissue | igin
Cell Type | Cell Types
Developed | Differentiation
Conditions | Methods of
Characterization | Reference | |--|-------------------|--|---|--|----------------------------| | Embryo-
blastocyst
inner-cell
mass
(cont.) | ES | Dendritic (immune
cell) | Culture on stromal cell
layer
Interleukin-3
Granulocyte-
macrophage stimulating
factor | Immune-function assays
Immunophenotyping | Fairchild et al.,
2000 | | | ES | Embryoid bodies (EBs) consisting of structures that contain tissues of the three embryonic germ layers: endoderm, mesoderm, and ectoderm Teratocarcinoma | ES cultured in suspension
without feeder cell layer
Absence of LIF
Injection of ESs into mice | Observation of differentiation into multiple tissue types of the germ layers of blood, skeletal and cardiac muscle, primitive gastrointestinal and neural tissue Growth of tumor containing tissues from embryonic germ layer | Evans and
Kaufman, 1981 | | | ES | ES self-renewal | LIF
Culture on feeder cell
layer | Observation of extensive
ES proliferation and self-
renewal | Evans and
Kaufman, 1981 | | | ES | Endothelial | Culture on collagen
substrate
Hematopoietic growth
factors
Semisolid media
EB implanted peritoneal
cavity | Observation of capillary formation | Risau et al.,
1988 | | | ES | Endothelial
Smooth muscle
Vascular progenitor | Culture over collagen-IV matrix Absence of LIF Vascular endothelial growth factor | Electron microscopy: observation of endothelial and smooth muscle vascular structures Detection of endothelial cell marker by immunochemistry Detection of smooth muscle markers by immunochemistry | Yamashita et
al., 2000 | | Ori
Tissue | igin
Cell Type | Cell Types
Developed | Differentiation
Conditions | Methods of
Characterization | Reference | |--|-------------------|-------------------------------------|---|---|--| | Embryo-
blastocyst
inner-cell
mass
(cont.) | ES | HSC and erythroid | Interleukin-6 Absence of LIF and cell feeder layer Culture on collagen substrate Hematopoietic growth factors Semisolid media BMP-4 | Antibodies against
surface markers
FACS
Immunophenotyping | Wiles and Keller,
1991
Johansson and
Wiles, 1995
Perkins et al.,
1998 | | | ES | Keratinocyte (skin) | B-mercaptoethanol
Implantation of ES cells
in mice | Microscopy
Immunofluorescence
Observation of skin tissue
differentiation
Measurement of keratin | Bagutti et al.,
1996 | | | ES | Lymphoid
precursor
Lymphocyte | Culture of ES in low
oxygen concentration
(5%) without
hematopoietic growth
factors | Antibodies to lymphoid
cell-surface proteins
Analysis of antibody
production and
lymphocyte receptors | Potocnik et al.,
1994 | | | ES | Macrophage | Interleukin-3 and
macrophage colony
stimulating factor | Immunophenotyping
Immune-function assays | Lieschke and
Dunn, 1995 | | | ES | Mast | Lethal mutations in ES cells Culture of EBs in media containing interleukin-3, stem cell factor | Transplantation of cells into mast cell-deficient mice Immunologic- and inflammation-function tests Analysis of gene expression | Johansson and
Wiles, 1995
Tsai et al., 2000 | | | ES | Melanocyte | Dexamethasone
Stromal cell layer
Steel factor | Morphology studies Reactivity to growth factors Expression of melanogenic markers | Yamane et al.,
1999 | | Ori
Tissue | gin
Cell Type | Cell Types
Developed | Differentiation
Conditions | Methods of
Characterization | Reference | |--|------------------|-------------------------|--|---|--------------------------| | Embryo-
blastocyst
inner-cell
mass
(cont.) | ES | Neuron | Expression of noggin
cDNA in ES
Expression of neuronal
determination gene
EB exposed to retinoic
acid | Detection of antibodies to neuronal proteins | O'Shea, 1999 | | | ES | Oligodendrocyte | Retinoic acid Induced spinal cord injury Transplantation of ES- derived cells into spinal cord of mice | Detection of remyelination in spinal cord Antibodies to oligodendrocyte-specific proteins | Liu et al., 2000 | | | ES | Osteoblast (bone cell) | Co-cultured with fetal mouse osteoblasts Dexamethasone, retinoic acid, ascorbic acid, B-glycerophosphate | Microscopy; observation
of mineralized bone
nodules
Histochemistry | Buttery et al.,
2001 | | | ES | Pancreatic | Insertion of insulin-gene
promoter into ES | Antibodies to cellular proteins Measurement of insulin, glucagon, somatostatin Observation of islet-like organization of cells Transplantation of cells into diabetic mice with resultant lowering of blood glucose | Soria et al.,
2000 | | | ES | Pancreatic islet-like | Serum-free media Absence of feeder-cell layer Basic fibroblast growth factor Nicotinamide | Detection of antibodies
to cellular and cell-
surface proteins | Lumelsky et al.,
2001 | | | ES | Skeletal muscle | Overexpression of insulin-
like growth factor-2 in ES
through gene insertion
Dimethyl sulfoxide | Observation of myocyte differentiation Measurement of myocyte-specific gene expression and proteins | Prelle et al.,
2000 | | Ori
Tissue | gin
Cell Type | Cell Types
Developed | Differentiation
Conditions | Methods of
Characterization | Reference | |--|--------------------------------------
----------------------------------|--|--|--| | Embryo-
blastocyst
inner-cell
mass
(cont.) | ES | Skeletal muscle | Transforming growth factor-beta and retinoic acid ES co-culture with stromal cells Fetal calf serum B-mercaptoethanol | Observation of myocyte differentiation Detection of functional muscle cell receptors Measurement of myocyte-specific gene expression | Slager et al.,
1993
Rohwedel et al.,
1994 | | | ES | Smooth muscle | Retinoic acid and db-cAMP Culture over collagen IV matrix Vascular endothelial growth factor Platelet-derived growth factor-BB | Electron microscopy
observation of vascular
structures
Detection of smooth
muscle markers: SMA,
CGA7 | Drab et al.,
1997
Yamashita et
al., 2000 | | | ES | Smooth muscle | Platelet-derived growth factor | FACS Detection of smooth muscle cell proteins | Hirashima et al.,
1999 | | | ES | White blood cell | Interleukin-3
Transplantation of ESs
into lymphocyte-
deficient mice | Measurement of
lymphocyte-specific
gene expression
Radioimmunoassay | Wiles and Keller,
1991 | | | ES | White blood cell | Transplantation of ES cells into lymphocyte-deficient mice | Histology
Immunophenotyping
Antibodies to cell-
specific proteins | Rathjen et al.,
1998 | | Gonadal
ridge
(fetal) | Embryonic
primordial germ
cell | Endoderm
Mesoderm
Ectoderm | "Reprogramming" primordial germ cells: culture of primordial germ cell with LIF, basic fibroblast growth factor and Steel factor | Histology
Immunocytochemistry | Matsui et al.,
1992 | | Or
Tissue | igin
Cell Type | Cell Types
Developed | Differentiation
Conditions | Methods of
Characterization | Reference | |--------------------|---|---|--|--|--------------------------| | Liver | HSC | HSC
All blood cell
lineages | Enrichment of cell populations through immunoselection Purification of CD45+ liver cells Selection of cells with HSC markers Transplantation of HSCs into lethally irradiated mice | Colony-forming assays Detection of in vitro growth of hematopoietic colonies by flow cytometry and cell sorting Liver-derived cells reconstituted from bone marrow of transplanted mice FACS | Taniguchi et al.,
199 | | Pancreas | Pancreatic
ductal epithelial
cell | Alpha, beta, and
delta pancreatic
islet | Stem cells isolated from prediabetic adult, nonobese mice Cells cultured for an extensive period Pancreatic cells transplanted into diabetic mice | Analysis of pancreatic cell gene expression and differentiation markers Glucose challenge test in vitro Observation of reversal of insulin-dependent diabetes in mice with transplants | Ramiya et al.,
2000 | | | Unselected pancreatic cells | Hepatocyte | Pancreatic cells
transplanted into mice
with liver-enzyme
deficiency | Detection of normalized
liver function in mice
Histological evidence of
donor-derived
hepatocytes | Wang et al.,
2001 | | Skeletal
muscle | Muscle | Adipocyte | Long-chain fatty acids
Thiazolidinediones | Assays of adipocyte enzyme function Observation of adipocyte differentiation Detection of adipocyte-specific gene expression | Grimaldi et al.,
1997 | | | Muscle | Osteoclast and osteocyte Osteoprogenitor | Exposure of donor cells to BMP-2 Retroviral transfection of cells with vector and transplantation into severe combined immunodeficient mice (SCID) | Detection of ectopic bone formation Detection of musclederived cells Co-localization with osteocalcin-producing cells in newly formed bone matrix | Bosch et al.,
2000 | | Or
Tissue | igin
Cell Type | Cell Types
Developed | Differentiation
Conditions | Methods of
Characterization | Reference | |-------------------------------|------------------------------|--|---|---|--| | Skeletal
muscle
(cont.) | Muscle
Satellite | HSC
Myocyte precursor | Isolation of transcription
factor Pax7 as a gene
expressed specifically in
satellite cell-derived
myoblasts | Detection of Pax7 ⁺⁻ and Pax7 ⁺ muscle cells in hematopoietic and myogenic cells | Seale et al.,
2000 | | | Muscle
Satellite or
SP | All blood cell
lineages
HSC | Transplant of muscle-
derived cells into lethally
irradiated mice | Observation of engraftment of muscle cells in bone marrow Antibodies to hematopoietic cell markers FACS | Jackson et al.,
1999
Gussoni et al.,
1999 | | | Satellite | Myocyte Myocyte precursor | Induced tissue injury;
mechanical and
denervation stress
Transcription factor
expression | Detection of myocyte
progenitor and myocyte-
specific proteins and
mRNA transcripts | Megeney et al.,
199 | | Spinal
cord | NSC | Astrocyte
Neuron
Oligodendrocyte | Basic fibroblast growth factor Epidermal growth factor | Detection of antibodies
to neural cell proteins | Weiss et al.,
1996 | ## Appendix D.ii. Published Reports on Isolation and Differentiation of Human Fetal Tissue Germ Cells | Or
Tissue | igin
Cell Type | Cell Types
Developed | Differentiation
Conditions | Methods of
Characterization | Reference | |------------------|-------------------------|---|---|--|---------------------------| | Gonadal
ridge | Primordial germ
cell | Embryoid bodies | SDEC line of embryoid
body derived cells
transplanted into rats
paralyzed with a virus
induced motor neuron
degeneration | Functional assessment of rat locomotion and righting ability (turning from supine to prone) Histopathologic examination of motor axons Immunohistochemistry of mature neurons: NeuN+ and 68-kilodalton neurofilament | Kerr et al., 2001 | | | Primordial germ
cell | Embryoid bodies
with neural cells,
vascular
endothelium,
muscle cells,
endodermal
derivatives | Leukemia inhibitory
factor,
Basic fibroblast growth
factor | Clonal expression, polymerase chain reaction Ethidium bromide fluorescence detection Surface markers: 68-kilodalton neurofilament, neuron-specific enolase, tau, vimentin, human nestin, galactocerebroside, O4, SMI32 | Shamblott et al., 2001 | | | Primordial germ
cell | Embryoid bodies
with three germ
layers: endoderm,
mesoderm,
ectoderm | Leukemia inhibitory
factor,
Basic fibroblast growth
factor | Detection of surface
markers: SSEA-1, SSEA-3,
SSEA-4, TRA-1-60, TRA-1-
81 | Shamblott et
al., 1998 | ## Appendix D.iii. Published Reports on Isolation and Differentiation of Human Embryonic Stem Cells | Or
Tissue | igin
Cell Type | Cell Types
Developed | Differentiation
Conditions | Methods of
Characterization | Reference | |---|---|--|---|--|---------------------------------| | Human
embryo
(from
in vitro
fertilization
(IVF)) | Blastocyst inner-
cell mass | Ectoderm Endoderm Mesoderm Neuronal progenitor cell | Leukemia inhibitory
factor
Injection into severe
combined
immunodeficient (SCID)
mice | Developed two lines
(HES-1, HES-2)
Clonal expression
Polymerase chain
reaction
Surface markers: SSEA-1,
SSEA-4, TRA-1-60,
GTCM-2 | Reubinoff et al.,
2000 | | | Blastocyst innercell mass (H9 clone line from Thomson et al., 1998) | Cardiomyocyte | Embryoid body
formation
(See Itskovitz-Eldor et al.,
2000) | Visualization of contracting areas in embryoid bodies Immunohistochemistry for cardiac myosin heavy chain, alpha-actinin, desmin, cardiac troponin I, and antinaturetic protein. | Assady et al.,
2001 | | | Blastocyst innercell mass (H9 clone line from Thomson et al., 1998) | Cardiomyocyte | Embryoid body
formation | Polymerase chain reaction for cardiac-specific genes and transcription factors | Kehat et al.,
2001 | | | Blastocyst innercell mass (H9 clone line from Thomson et al., 1998) |
Cardiomyocyte
Endoderm
Hematopoietic
Neuron | Leukemia inhibitory
factor
Basic fibroblast growth
factor
Collagenase or
trypsin/EDTA to induce
embryoid body | Clonal expression Polymerase chain reaction Surface markers: gamma-globin, 68- kilodalton neurofilament, alpha-fetoprotein, albumin | ltskovitz-Eldor et
al., 2000 | | | Blastocyst innercell mass (H9 clone line from Thomson et al., 1998) | Ectoderm: brain, skin, adrenal Endoderm: liver, pancreas Mesoderm: muscle, bone, kidney, urogenital, heart, hematopoietic, hematopoietic | Basic fibroblast growth factor, transforming growth factor beta 1, activin-A, bone morphogenic protein 4 hepatocyte growth factor, epidermal growth factor, beta nerve growth factor, retinoic acid | Clonal expression Polymerase chain reaction Surface markers | Schuldiner et
al., 2000 | | Ori
Tissue | gin
Cell Type | Cell Types
Developed | Differentiation
Conditions | Methods of
Characterization | Reference | |---|---|---|--|---|-------------------------| | Human
embryo
(from
in vitro
fertilization
(IVF)
(cont.) | Blastocyst inner-
cell mass (H9
clone line from
Thomson et al.,
1998) | Ectoderm: neural epithelium, embryonic ganglia, stratified squamous epithelium Endoderm: gut epithelium Mesoderm: cartilage, bone, smooth muscle, striated muscle | Injection of cell lines into
severe combined
immunodeficient mice
Leukemia inhibitory
factor
Type IV collagenase | Surface markers: SSEA-3,
SSEA-4, TRA-160, TRA-181,
alkaline phosphatase
Radioimmunoassay
detection: alpha-
fetoprotein and human
chorionic gonadotropin | Thomson et al.,
1998 | | | Blastocyst innercell mass (H9 clone line from Thomson et al., 1998) | Pancreatic beta
cell | Embryoid body
formation
(See Itskovitz-Eldor et al.,
2000)
No leukemia inhibitory
factor or basic fibroblast
growth factor | Immunohistochemistry
for insulin
Polymerase chain
reaction for insulin,
IPF1/PDX1, Ngn3, beta-
actin, Glut-1, Glut-2,
glucokinase, and Oct 4 | Assady et al.,
2001 | EC Neuron | Appendix D.iv. Published Reports on Isolation and Differentiation of Human Embryonic Carcinoma Stem Cells | | | | | | |--|-----------------------------|-------------------------------|---|--|--| | O:
Tissue | rigin
Cell Type | Cell Types
Developed | Differentiation
Conditions | Methods of
Characterization | Reference | | Terato-
carci-
noma | Embryonic
carcinoma (EC) | Endodermal
progenitor cell | Absence of feeder cell
layer
Bone morphogenetic
protein-2
Retinoic acid | Analysis of stem cell
marker-gene transcription
Immunochemistry
Immunofluorescence | Roach et al.,
1994
Pera and
Herszfeld, 1998 | | | EC | Neuron | EC transplanted into mouse brain | Observation of functional synapses Immunochemistry | Trojanowski et
al., 1993 | | | EC | Glial
Neuron | Retinoic acid | Measurement of mRNA for GABA(A) receptor-chloride complex Recording of whole-cell voltage-clamp measurements in differentiated cells in the presence of GABA(A) receptor antagonists and activators (bicuculline and flurazepam, respectively) | Reynolds et al.,
1994 | | | EC | Glial
Neuron | Retinoic acid | Detection of neurons with
HNK-1 antibody
Measurement of
acetylcholine synthesis
and detection of high-
affinity uptake sites for
GABA | McBurney et al.,
1988 | Retinoic acid Morphology and histology Analysis of neuronspecific proteins Andrews, 1984 | Ori | igin | Cell Types | Differentiation | Methods of | Reference | |--|-----------|--|--|---|---| | Tissue | Cell Type | Developed | Conditions | Characterization | | | Terato-
carci-
noma or
teratoma | EC | Tumors containing tissue types from endoderm, mesoderm, and ectoderm | Bone morphogenetic protein-7 EC cells cultured without feeder cell layer Transplantation of EC cells into mice | Morphology, histology, and cell staining Observation of tissue types from endoderm, mesoderm, and ectoderm Observation of extended self-renewal of EC cells Analysis of chromosomes and specific genes Detection of cell-specific proteins Cytochemical assay | Andrews et al.,
1984
Thompson et
al., 1984
Pera, 1989 | | Appendix D.v. Published Reports on Isolation and Differentiation of Human Adult Stem Cells | | | | | | | |--|--|--|--|---|--|--| | O
Tissue | rigin
Cell Type | Cell Types
Developed | Differentiation
Conditions | Methods of
Characterization | Reference | | | Blood | Circulatory
Skeletal | Adipocyte
Osteocyte | Leukemia inhibitory
factor (LIF)
Transplantation of stem
cells into bg-nu-xid
immunocompromised
mice | Antibody labeling
Polymerase chain
reaction | Kuznetsov, 2001 | | | Bone
marrow | Angioblast
(endothelial
precursor) | Mature endothelia
and newly formed
blood vessels | Angioblasts isolated by mobilizing peripheral blood with granulocytecolony stimulating factor Angioblasts injected into rats with experimental myocardial infarction | Observation of neovascularization within myocardium from transplanted cells Detection of improved cardiac function in experimental animals | Kocher et al.,
2001 | | | | Hematopoietic
stem cell (HSC) | Hepatocyte
Cholangiocyte | Bone marrow
transplantation | Probed for presence and function of Y chromosome-containing liver cells Measured expression of liver-specific proteins Immunochemistry | Alison et al.,
2000
Theise et al.,
2000 | | | | Human marrow
stromal | Stromal-derived
cell engrafted in
rat brain | Isolation of marrow
stromal cell from human
volunteers; injection of
stromal cell into rat brain | Observation of engraffment, migration, and survival of stromalderived cell in rat brain Observation of loss of stromal cell functions Antibodies to cell-surface proteins | Azizi et al., 1998 | | | | Mesenchymal
stem cell
(MSC) | Adipocyte
Chondrocyte
Osteocyte | Fetal bovine serum,
dexamethasone,
isobutylxanthine, insulin,
ascorbate,
indomethacin,
transforming growth
factor-B3, and glycerol
phosphate | Histology and immunofluorescence Detection of lipids and specific enzyme activity of adipocytes and osteocytes Specific staining for chondrocytes | Pittenger et al.,
1999 | | | Or
Tissue | igin
Cell Type | Cell Types
Developed | Differentiation
Conditions | Methods of
Characterization | Reference | |---------------------------|---------------------------|--|---|---|-------------------------------| | Bone
marrow
(cont.) | MSC | Neuron | Prolonged expansion of MSCs as undifferentiated cells β-mercaptoethanol (BME) Butylated hydroxyanisole (BHA) | Histology Detection of numerous neuron-specific proteins via staining and antibody binding | Woodbury et al., 2000 | | | MSC | Neuron | MSCs cultured with fetal
rat brain cells
Epidermal growth factor
Brain-derived
neurotrophic factor | Detection of nestin and
nestin-gene expression
Detection of neuron-
specific proteins | Sanchez-Ramos
et al., 2000 | | | MSC | Adipocyte Bone marrow stromal cell Cardiomyocyte Chondrocyte Myocyte Thymic stromal cell | MSCs isolated from bone
marrow
Transplantation of MSCs
into fetal sheep | Analysis of human gene expression in sheep tissues Confirmed
presence of human cells by immunohistochemistry | Liechty et al.,
2000 | | Bone
marrow
(fetal) | HSC | HSC
Red blood cell
lineages
White blood cell
lineages | Enrichment of hematopoietic cell populations by cell selection Transplantation of bone marrow and thymus cells into mice | Establishment of long-
term multilineage
cultures of
hematopoietic colonies
Fluorescence-activated
cell sorting (FACS)
Engraftment of
hematopoietic cells in
mice | Baum et al.,
1992 | | Brain | Neural stem
cell (NSC) | Muscle cell | Exposure of NSCs to
myoblasts
Dissociation of NSC
clusters
Transplantation of human
NSCs into mice with
induced muscle injury | Observation of differentiated skeletal muscle cells from primary and culturederived NSCs Demonstration of NSC engraftment in mice by detection of expression of specific genes | Galli et al.,
2000 | | Or
Tissue | igin
Cell Type | Cell Types
Developed | Differentiation
Conditions | Methods of
Characterization | Reference | |-------------------------------------|--|---|--|---|------------------------| | Brain
(adult
and
neonatal) | Neural
progenitor cell
(NPC) | Astrocyte
Neuron
Oligodendrocyte | NPCs cultured in medium containing glutamine, amphotericin-B, antibiotics, fetal calf serum, basic fibroblast growth factor, epidermal growth factor, and platelet-derived growth factor AB Transplantation of human central nervous system stem cells (hCNS-SCs) into mice | Observation of functional engraftment of NPCs into mouse brain Antibody labeling of neuronal cell-surface proteins | Palmer et al.,
2001 | | Brain
(fetal) | Human central
nervous system
stem cell
(hCNS-SC) | Astrocyte
Neuron
Oligodendrocyte | Fibroblast growth factor-
2, epidermal growth
factor, lymphocyte
inhibitory factor, neural
survival factor-1, brain-
derived and glial-derived
neurotrophic factors | Observation of neurosphere formation and self-renewal of hCNS-SCs Demonstration of engraftment, proliferation, migration, and neural differentiation of hCNS-SCs FACS | Uchida et al.,
2000 | | Fat | Stromal
vascular cell
fraction of
processed
lipoaspirate | Adipocyte precursor Osteocyte precursor Chondrocyte precursor Myocyte precursor | Co-cultured with mouse adipocytes, isobutylmethylxanthine, dexamethasone Co-cultured with human osteoblasts, insulin, indomethacin, antibiotic/antimycotic dexamethasone, ascorbate, b-glycerophosphate, antibiotic/antimycotic Co-cultured with human skeletal myocytes, insulin, transforming growth factor-B, ascorbate, antibiotic/antimycotic dexamethasone, hydrocortisone, antibiotic/antimycotic | Staining for lipid accumulation Staining for alkaline phosphatase activity Staining for bone formation Staining for proteoglycan-rich matrix Antibody binding to collagen II Visualization of multinucleation Staining for muscle protein: myosin Antibody binding to MyoD1 | Zuk et al., 2001 | | Or
Tissue | igin
Cell Type | Cell Types
Developed | Differentiation
Conditions | Methods of
Characterization | Reference | |----------------------------|--|---|--|--|--| | Liver
(fetal) | HSC | Hematopoietic
progenitor cell
(HPC)
Red blood cell
lineages
White blood cell
lineages | Co-culture of HSCs with
mouse stromal cells
Implantation of fetal
hematopoietic liver cells
into immunocom-
promised mice | Demonstration of
differentiation into red
and white blood cell
lineages through colony-
forming assays and
detection of surface
markers characteristic of
the hematopoietic
system | McCune et al.,
1988
Namikawa et
al., 1990 | | Pancreas | Nestin-positive
islet-derived
progenitor cell
(NIP) | Pancreatic
Hepatic | NIPs obtained from
pancreatic islets and
cultured for extended
periods | Observation of extended proliferative, self-renewing, and multipotent capacity Expression of hepatic and exocrine pancreatic markers Demonstration of ductal and endocrine pancreatic features Production of insulin and glucagons | Zulewski et al.,
2000 | | Umbilical
cord
blood | HPC | Most red and white blood cell lineages | Collection and sorting
Stimulation with colony-
stimulating factors and
interleukin-3 | Demonstration of multipotent progenitor, granulocyte-macrophage, and erythroid cell lines | Broxmeyer et
al., 1989 | | | HSC
Mesenchymal
progenitor cell
(MPC) | Most red and white
blood cell lineages
Osteoblasts
Adipocytes | Mixtures of dexamethasone, ß-glycerol, ascorbate, insulin, isobutyl-methylxanthine, and indomethacin | Cell morphology Cytochemical analysis of osteoblast and adipocyte products Immunophenotyping | Erices et al.,
1999 | #### Appendix D.vi. #### REFERENCES - Alison, M.R., Poulsom, R., Jeffery, R., Dhillon, A.P., Quaglia, A., Jacob, J., Novelli, M., Prentice, G., Williamson, J., and Wright, N.A. (2000). Hepatocytes from non-hepatic adult stem cells. Nature. 406, 257. - Andrews, P.W., Damjanov, I., Simon, D., Banting, G.S., Carlin, C., Dracopoli, N.C., and Fogh, J. (1984). Pluripotent embryonal carcinoma clones derived from the human teratocarcinoma cell line Tera-2. Differentiation in vivo and in vitro. Lab. Invest. 50, 147-162. - Assady, S., Maor, G., Amit, M., Itskovitz-Eldor, J., Skorecki, K.L., and Tzukerman, M. (2001). Insulin production by human embryonic stem cells. Diabetes, 50, http://www.diabetes.org/Diabetes_Rapids/Suheir_Assady_ 06282001.pdf. - Azizi, S.A., Stokes, D., Augelli, B.J., DiGirolamo, C., and Prockop, D.J. (1998). Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats—similarities to astrocyte grafts. Proc. Natl. Acad. Sci. U. S. A. 95, 3908-3913. - Bader, A., Al Dubai, H., and Weitzer, G. (2000). Leukemia inhibitory factor modulates cardiogenesis in embryoid bodies in opposite fashions. Circ. Res. 86, 787-794. - Bagutti, C., Wobus, A.M., Fassler, R., and Watt, F.M. (1996). Differentiation of embryonal stem cells into keratinocytes: comparison of wild-type and β(1) integrin-deficient cells. Dev. Biol. 179, 184-196. - Bain, G., Kitchens, D., Yao, M., Huettner, J.E., and Gottlieb, D.I. (1995). Embryonic stem cells express neuronal properties in vitro. Dev. Biol. 168, 342-357. - Baum, C.M., Weissman, I.L., Tsukamoto, A.S., Buckle, A.M., and Peault, B. (1992). Isolation of a candidate human hematopoietic stem-cell population. Proc. Natl. Acad. Sci. U. S. A. 89, 2804-2808. - Bittner, R.E., Schofer, C., Weipoltshammer, K., Ivanova, S., Streubel, B., Hauser, E., Freilinger, M., Hoger, H., Elbe-Burger, A., and Wachtler, F. (1999). Recruitment of bone-marrowderived cells by skeletal and cardiac muscle in adult dystrophic mdx mice. Anat. Embryol. (Berl) 199, 391-396. - Bjornson, C.R., Rietze, R.L., Reynolds, B.A., Magli, M.C., and Vescovi, A.L. (1999). Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo. Science. 283, 534-537. - Bosch, P., Musgrave, D.S., Lee, J.Y., Cummins, J., Shuler, F., Ghivizzani, S.C., Evans, C., Robbins, P.D., and Huard, J. (2000). Osteoprogenitor cells within skeletal muscle. J. Orthop. Res. 18, 933-944. - Brazelton, T.R., Rossi, F.M., Keshet, G.I., and Blau, H.M. (2000). From marrow to brain: expression of neuronal phenotypes in adult mice. Science. 290, 1775-1779. - Broxmeyer, H.E., Douglas, G.W., Hangoc, G., Cooper, S., Bard, J., English, D., Arny, M., Thomas, L., and Boyse, E.A. (1989). Human umbilical cord blood as a potential source of transplantable hematopoietic stem/progenitor cells. Proc. Natl. Acad. Sci. U. S. A. 86, 3828-3832. - Brustle, O., Jones, K.N., Learish, R.D., Karram, K., Choudhary, K., Wiestler, O.D., Duncan, I.D., and McKay, R.D. (1999). Embryonic stem cell-derived glial precursors: a source of myelinating transplants. Science. 285, 754-756. - Buttery, L.D., Bourne, S., Xynos, J.D., Wood, H., Hughes, F.J., Hughes, S.P., Episkopou, V., and Polak, J.M. (2001). Differentiation of osteoblasts and in vitro bone formation from murine embryonic stem cells. Tissue Eng. 7, 89-99. - Dani, C., Smith, A.G., Dessolin, S., Leroy, P., Staccini, L., Villageois, P., Darimont, C., and Ailhaud, G. (1997). Differentiation of embryonic stem cells into adipocytes in vitro. J. Cell Sci. 110, 1279-1285. - Dinsmore, J., Ratliff, J., Deacon, T., Pakzaban, P., Jacoby, D., Galpern, W., and Isacson, O. (1996). Embryonic stem cells differentiated in vitro as a novel source of cells for transplantation. Cell Transplant. 5, 131-143. - Doetsch, F.,
Caille, I., Lim, D.A., Garcia-Verdugo, J.M., and Alvarez-Buylla, A. (1999). Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell. 97, 703-716. - Doetschman, T., Eistetter, H., Katz, M., Schmit, W., and Kemler, R. (1985). The *in vitro* development of blastocystderived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J. Embryol. Exp. Morph. 87, 27-45. - Drab, M., Haller, H., Bychkov, R., Erdmann, B., Lindschau, C., Haase, H., Morano, I., Luft, F.C., and Wobus, A.M. (1997). From totipotent embryonic stem cells to spontaneously contracting smooth muscle cells: a retinoic acid and dbcAMP in vitro differentiation model. FASEB J. 11, 905-915. - Eglitis, M.A. and Mezey, E. (1997). Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proc. Natl. Acad. Sci. U. S. A. 94, 4080-4085. - Erices, A., Conget, P., and Minguell, J.J. (1999). Mesenchymal progenitor cells in human umbilical cord blood. Br. J. Haematol. 109, 235-242. - Evans, M.J. and Kaufman, M.H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature. 292, 154-156. - 24. Fairchild, P.J., Brook, F.A., Gardner, R.L., Graca, L., Strong, V., Tone, Y., Tone, M., Nolan, K.F., and Waldmann, H. (2000). Directed differentiation of dendritic cells from mouse embryonic stem cells. Curr. Biol. 10, 1515-1518. - Ferrari, G., Cusella-De Angelis, G., Coletta, M., Paolucci, E., Stornaiuolo, A., Cossu, G., and Mavilio, F. (1998). Muscle regeneration by bone marrow-derived myogenic progenitors. Science. 279, 1528-1530. - Fraichard, A., Chassande, O., Bilbaut, G., Dehay, C., Savatier, P., and Samarut, J. (1995). *In vitro* differentiation of embryonic stem cells into glial cells and functional neurons. J. Cell Sci. 108, 3181-3188. - Friedenstein, A.J., Gorskaja, U.F., and Kulagina, N.N. (1976). Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp. Hematol. 4, 267-274. - Galli, R., Borello, U., Gritti, A., Minasi, M.G., Bjornson, C., Coletta, M., Mora, M., De Angelis, M.G., Fiocco, R., Cossu, G., and Vescovi, A.L. (2000). Skeletal myogenic potential of human and mouse neural stem cells. Nat. Neurosci. 3, 986-991. - 29. Gottlieb, D.I. and Huettner, J.E. (1999). An *in vitro* pathway from embryonic stem cells to neurons and glia. Cells Tissues Organs. *165*, 165-172. - Grimaldi, P.A., Teboul, L., Inadera, H., Gaillard, D., and Amri, E.Z. (1997). Trans-differentiation of myoblasts to adipoblasts: triggering effects of fatty acids and thiazolidinediones. Prostaglandins. Leukot. Essent. Fatty. Acids. 57, 71-75. - Gussoni, E., Soneoka, Y., Strickland, C.D., Buzney, E.A., Khan, M.K., Flint, A.F., Kunkel, L.M., and Mulligan, R.C. (1999). Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature. 401, 390-394. - 32. Hirashima, M., Kataoka, H., Nishikawa, S., Matsuyoshi, N., and Nishikawa, S. (1999). Maturation of embryonic stem cells into endothelial cells in an *in vitro* model of vasculogenesis. Blood. 93, 1253-1263. - 33. Itskovitz-Eldor, J., Schuldiner, M., Karsenti, D., Eden, A., Yanuka, O., Amit, M., Soreq, H., and Benvenisty, N. (2000). Differentiation of human embryonic stem cells into embryoid bodies comprising the three embryonic germ layers. Mol. Med. 6, 88-95. - Jackson, K.A., Mi, T., and Goodell, M.A. (1999). Hematopoietic potential of stem cells isolated from murine skeletal muscle. Proc. Natl. Acad. Sci. U. S. A. 96, 14482-14486. - Jackson, K., Majka SM, Wang H, Pocius J, Hartley CJ, Majesky MW, Entman ML, Michael LH, Hirschi KK, and and Goodell MA (2001). Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J. Clin. Invest. 107, 1-8. - Johansson, B.M. and Wiles, M.V. (1995). Evidence for involvement of activin A and bone morphogenetic protein 4 in mammalian mesoderm and hematopoietic development. Mol. Cell Biol. 15, 141-151. - 37. Johansson, C.B., Momma, S., Clarke, D.L., Risling, M., Lendahl, U., and Frisen, J. (1999). Identification of a neural stem cell in the adult mammalian central nervous system. Cell. 96, 25-34. - Kawasaki, H., Mizuseki, K., Nishikawa, S., Kaneko, S., Kuwana, Y., Nakanishi, S., Nishikawa, S.I., and Sasai, Y. (2000). Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron. 28, 31-40. - 39. Kehat, I., Kenyagin-Karsenti, D., Druckmann, M., Segev, H., Amit, M., Gepstein, A., Livne, E., Binah, O., Itskovitz-Eldor, J., and Gepstein, L. (2001). Human embryonic stem cells can differentiate into myocytes portraying cardiomyocytic structural and functional properties. J. Clin. Invest. (in press). - Kerr, D.A., Llado, J., Shamblott, M., Maragakis, N., Irani, D.N., Dike, S., Sappington, A., Gearhart, J., and Rothstein, J. (2001). Human embryonic germ cell derivatives facillitate motor recovery of rats with diffuse motor neuron injury. - Klug, M.G., Soonpaa, M.H., Koh, G.Y., and Field, L.J. (1996). Genetically selected cardiomyocytes from differentiating embryonic stem cells form stable intracardiac grafts. J. Clin. Invest. 98, 216-224. - 42. Kocher, A.A., Schuster, M.D., Szabolcs, M.J., Takuma, S., Burkhoff, D., Wang, J., Homma, S., Edwards, N.M., and Itescu, S. (2001). Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat. Med. 7, 430-436. - Kopen, G.C., Prockop, D.J., and Phinney, D.G. (1999). Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc. Natl. Acad. Sci. U. S. A. 96, 10711-10716. - 44. Kramer, J., Hegert, C., Guan, K., Wobus, A.M., Muller, P.K., and Rohwedel, J. (2000). Embryonic stem cell-derived chondrogenic differentiation *in vitro*: activation by BMP-2 and BMP-4. Mech. Dev. 92, 193-205. - Krause, D.S., Theise, N.D., Collector, M.I., Henegariu, O., Hwang, S., Gardner, R., Neutzel, S., and Sharkis, S.J. (2001). Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell. 105, 369-377. - Kuznetsov, S.A., Mankani, M.H., Gronthos, S., Satomura, K., Bianco, P., and Robey P.G. (2001). Circulating skeletal stem cells. J. Cell Biol. 153, 1133-40. - Lagasse, E., Connors, H., Al Dhalimy, M., Reitsma, M., Dohse, M., Osborne, L., Wang, X., Finegold, M., Weissman, I.L., and Grompe, M. (2000). Purified hematopoietic stem cells can differentiate into hepatocytes *in vivo*. Nat. Med. 6, 1229-1234. - 48. Lee, S.H., Lumelsky, N., Studer, L., Auerbach, J.M., and McKay, R.D. (2000). Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat. Biotechnol. 18, 675-679. - 49. Li, M., Pevny, L., Lovell-Badge, R., and Smith, A. (1998). Generation of purified neural precursors from embryonic stem cells by lineage selection. Curr. Biol. 8, 971-974. - Liechty, K.W., MacKenzie, T.C., Shaaban, A.F., Radu, A., Moseley, A.B., Deans, R., Marshak, D.R., and Flake, A.W. (2000). Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat. Med. 6, 1282-1286. - 51. Lieschke, G.J. and Dunn, A.R. (1995). Development of functional macrophages from embryonal stem cells *in vitro*. Exp. Hematol. 23, 328-334. - 52. Liu, S., Qu, Y., Stewart, T.J., Howard, M.J., Chakrabortty, S., Holekamp, T.F., and McDonald, J.W. (2000). Embryonic stem cells differentiate into oligodendrocytes and myelinate in culture and after spinal cord transplantation. Proc. Natl. Acad. Sci. U. S. A. 97, 6126-6131. - 53. Lumelsky, N., Blondel, O., Laeng, P., Velasco, I., Ravin, R., and McKay, R. (2001). Differentiation of Embryonic Stem Cells to Insulin-Secreting Structures Similiar to Pancreatic Islets. Science. 292, 1389-1394. - 54. Makino, S., Fukuda, K., Miyoshi, S., Konishi, F., Kodama, H., Pan, J., Sano, M., Takahashi, T., Hori, S., Abe, H., Hata, J., Umezawa, A., and Ogawa, S. (1999). Cardiomyocytes can be generated from marrow stromal cells in vitro. J. Clin. Invest. 103, 697-705. - 55. Maltsev, V.A., Rohwedel, J., Hescheler, J., and Wobus, A.M. (1993). Embryonic stem cells differentiate *in vitro* into cardiomyocytes representing sinusnodal, atrial and ventricular cell types. Mech. Dev. 44, 41-50. - Matsui, Y., Zsebo, K., and Hogan, B.L. (1992). Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell. 70, 841-847. - McBurney, M.W., Reuhl, K.R., Ally, A.I., Nasipuri, S., Bell, J.C., and Craig, J. (1988). Differentiation and maturation of embryonal carcinoma-derived neurons in cell culture. J. Neurosci. 8, 1063-1073. - McCune, J.M., Namikawa, R., Kaneshima, H., Shultz, L.D., Lieberman, M., and Weissman, I.L. (1988). The SCID-hu mouse: murine model for the analysis of human hematolymphoid differentiation and function. Science. 241, 1632-1639. - Megeney, L.A., Kablar, B., Garrett, K., Anderson, J.E., and Rudnicki, M.A. (1996). MyoD is required for myogenic stem cell function in adult skeletal muscle. Genes Dev. 10, 1173-1183. - Mezey, E., Chandross, K.J., Harta, G., Maki, R.A., and McKercher, S.R. (2000). Turning blood into brain: cells bearing neuronal antigens generated *in vivo* from bone marrow. Science. 290, 1779-1782. - 61. Morrison, S.J., Uchida, N., and Weissman, I.L. (1995). The biology of hematopoietic stem cells. Annu. Rev. Cell. Dev. Biol. 11, 35-71. - 62 Namikawa, R., Weilbaecher, K.N., Kaneshima, H., Yee, E.J., and McCune, J.M. (1990). Long-term human hematopoiesis in the SCID-hu mouse. J. Exp. Med. *172*, 1055-1063. - 63. O'Shea, K.S. (1999). Embryonic stem cell models of development. Anat. Rec. 257, 32-41. - 64. Orlic, D., Kajstura, J., Chimenti, S., Jakoniuk, I., Anderson, S.M., Li, B., Pickel, J., McKay, R., Nadal-Ginard, B., Bodine, D.M., Leri, A., and Anversa, P. (2001). Bone marrow cells regenerate infarcted myocardium. Nature. 410,
701-705. - 65. Palmer, T.D., Schwartz, P.H., Taupin, P., Kaspar, B., Stein, S.A., and Gage, F.H. (2001). Progenitor cells from human brain after death. Nature. *411*, 42-43. - Pera, M.F., Cooper, S., Mills, J., and Parrington, J.M. (1989). Isolation and characterization of a multipotent clone of human embryonal carcinoma cells. Differentiation. 42, 10-23. - Pera, M.F. and Herszfeld, D. (1998). Differentiation of human pluripotent teratocarcinoma stem cells induced by bone morphogenetic protein-2. Reprod. Fertil. Dev. 10, 551-555. - 68. Pereira, R.F., Halford, K.W., O'Hara, M.D., Leeper, D.B., Sokolov, B.P., Pollard, M.D., Bagasra, O., and Prockop, D.J. (1995). Cultured adherent cells from marrow can serve as long-lasting precursor cells for bone, cartilage, and lung in irradiated mice. Proc. Natl. Acad. Sci. U. S. A. 92, 4857-4861. - 69. Perkins, A.C. (1998). Enrichment of blood from embryonic stem cells *in vitro*. Reprod. Fertil. Dev. 10, 563-572. - Petersen, B.E., Bowen, W.C., Patrene, K.D., Mars, W.M., Sullivan, A.K., Murase, N., Boggs, S.S., Greenberger, J.S., and Goff, J.P. (1999). Bone marrow as a potential source of hepatic oval cells. Science. 284, 1168-1170. - Pittenger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R., Mosca, J.D., Moorman, M.A., Simonetti, D.W., Craig, S., and Marshak, D.R. (1999). Multilineage potential of adult human mesenchymal stem cells. Science. 284, 143-147. - 72. Potocnik, A.J., Nielsen, P.J., and Eichmann, K. (1994). *In vitro* generation of lymphoid precursors from embryonic stem cells. EMBO J. *13*, 5274-5283. - Prelle, K., Wobus, A.M., Krebs, O., Blum, W.F., and Wolf, E. (2000). Overexpression of insulin-like growth factor-II in mouse embryonic stem cells promotes myogenic differentiation. Biochem. Biophys. Res. Commun. 277, 631-638. - Prockop, D.J. (1997). Marrow stromal cells as stem cells for nonhematopoietic tissues. Science. 276, 71-74. - Ramiya, V.K., Maraist, M., Arfors, K.E., Schatz, D.A., Peck, A.B., and Cornelius, J.G. (2000). Reversal of insulin-dependent diabetes using islets generated in vitro from pancreatic stem cells. Nat. Med. 6, 278-282. - Rathjen, P.D., Lake, J., Whyatt, L.M., Bettess, M.D., and Rathjen, J. (1998). Properties and uses of embryonic stem cells: prospects for application to human biology and gene therapy. Reprod. Fertil. Dev. 10, 31-47. - Reubinoff, B.E., Pera, M.F., Fong, C.Y., Trounson, A., and Bongso, A. (2000). Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat. Biotechnol. 18, 399-404. - Reynolds, B.A. and Weiss, S. (1996). Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev. Biol. 175, 1-13. - Reynolds, J.N., Ryan, P.J., Prasad, A., and Paterno, G.D. (1994). Neurons derived from embryonal carcinoma (P19) cells express multiple GABA(A) receptor subunits and fully functional GABA(A) receptors. Neurosci. Lett. 165, 129-132. - Risau, W., Sariola, H., Zerwes, H.G., Sasse, J., Ekblom, P., Kemler, R., and Doetschman, T. (1988). Vasculogenesis and angiogenesis in embryonic-stem-cell-derived embryoid bodies. Development. 102, 471-478. - 81. Roach, S., Schmid, W., and Pera, M.F. (1994). Hepatocytic transcription factor expression in human embryonal carcinoma and yolk sac carcinoma cell lines: expression of HNF-3α in models of early endodermal cell differentiation. Exp. Cell. Res. 215, 189-198. - Rohwedel, J., Maltsev, V., Bober, E., Arnold, H.H., Hescheler, J., and Wobus, A.M. (1994). Muscle cell differentiation of embryonic stem cells reflects myogenesis in vivo: developmentally regulated expression of myogenic determination genes and functional expression of ionic currents. Dev. Biol. 164, 87-101. - 83. Sanchez-Ramos, J., Song, S., Cardozo-Pelaez, F., Hazzi, C., Stedeford, T., Willing, A., Freeman, T.B., Saporta, S., Janssen, W., Patel, N., Cooper, D.R., and Sanberg, P.R. (2000). Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp. Neurol. 164, 247-256. - 84. Schuldiner, M., Yanuka, O., Itskovitz-Eldor, J., Melton, D., and Benvenisty, N. (2000). Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Proc. Natl. Acad. Sci. U. S. A. 97, 11307-11312. - 85. Seale, P., Sabourin, L.A., Girgis-Gabardo, A., Mansouri, A., Gruss, P., and Rudnicki, M.A. (2000). Pax7 is required for the specification of myogenic satellite cells. Cell. 102, 777-786. - Shamblott, M.J., Axelman, J., Littlefield, J.W., Blumenthal, P.D., Huggins, G.R., Cui, Y., Cheng, L., and Gearhart, J.D. (2001). Human embryonic germ cell derivatives express a broad range of develpmentally distinct markers and proliferate extensively *in vitro*. Proc. Natl. Acad. Sci. U. S. A. 98, 13-118. - Shamblott, M.J., Axelman, J., Wang, S., Bugg, E.M., Littlefield, J.W., Donovan, P.J., Blumenthal, P.D., Huggins, G.R., and Gearhart, J.D. (1998). Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc. Natl. Acad. Sci. U. S. A. 95, 13726-13731. - 88. Slager, H.G., Van Inzen, W., Freund, E., Van den Eijnden-Van Raaij A.J.M., and Mummery, C.L. (1993). Transforming growth factor-beta in the early mouse embryo: implications for the regulation of muscle formation and implantation. Dev. Genet. 14, 212-224. - 89. Soria, B., Roche, E., Berna, G., Leon-Quinto, T., Reig, J.A., and Martin, F. (2000). Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes. 49, 157-162. - Spangrude, G.J., Smith, L., Uchida, N., Ikuta, K., Heimfeld, S., Friedman, J., and Weissman, I.L. (1991). Mouse hematopoietic stem cells. Blood. 78, 1395-1402. - 91. Strubing, C., Ahnert-Hilger, G., Shan, J., Wiedenmann, B., Hescheler, J., and Wobus, A.M. (1995). Differentiation of pluripotent embryonic stem cells into the neuronal lineage *in vitro* gives rise to mature inhibitory and excitatory neurons. Mech. Dev. 53, 275-287. - Taniguchi, H., Toyoshima, T., Fukao, K., and Nakauchi, H. (1996). Presence of hematopoietic stem cells in the adult liver. Nat. Med. 2, 198-203. - 93. Theise, N.D., Nimmakayalu, M., Gardner, R., Illei, P.B., Morgan, G., Teperman, L., Henegariu, O., and Krause, D.S. (2000). Liver from bone marrow in humans. Hepatology. 32, 11-16. - Thompson, S., Stern, P.L., Webb, M., Walsh, F.S., Engstrom, W., Evans, E.P., Shi, W.K., Hopkins, B., and Graham, C.F. (1984). Cloned human teratoma cells differentiate into neuron-like cells and other cell types in retinoic acid. J. Cell. Sci. 72, 37-64. - Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., Waknitz, M.A., Swiergiel, J.J., Marshall, V.S., and Jones, J.M. (1998). Embryonic stem cell lines derived from human blastocysts. Science. 282, 1145-1147. - Tomita, S., Li, R.K., Weisel, R.D., Mickle, D.A., Kim, E.J., Sakai, T., and Jia, Z.Q. (1999). Autologous transplantation of bone marrow cells improves damaged heart function 672. Circulation. 100 (Suppl. II), 11247-11256. - Trojanowski, J.Q., Mantione, J.R., Lee, J.H., Seid, D.P., You, T., Inge, L.J., and Lee, V.M. (1993). Neurons derived from a human teratocarcinoma cell line establish molecular and structural polarity following transplantation into the rodent brain. Exp. Neurol. 122, 283-294. - 98. Tsai, M., Wedemeyer, J., Ganiatsas, S., Tam, S.Y., Zon, L.I., and Galli, S.J. (2000). *In vivo* immunological function of mast cells derived from embryonic stem cells: an approach for the rapid analysis of even embryonic lethal mutations in adult mice *in vivo*. Proc. Natl. Acad. Sci. U. S. A. 97, 9186-9190. - Uchida, N., Buck, D.W., He, D., Reitsma, M.J., Masek, M., Phan, T.V., Tsukamoto, A.S., Gage, F.H., and Weissman, I.L. (2000). Direct isolation of human central nervous system stem cells. Proc. Natl. Acad. Sci. U. S. A. 97, 14720-14725. - 100. Wakitani, S., Saito, T., and Caplan, A.I. (1995). Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine 754. Muscle. Nerve. 18, 1417-1426. - 101. Wang, X., Al-Dhalimy, M., Lagasse, E., Finegold, M., and Grompe, M. (2001). Liver repopulation and correction of metabolic liver disease by transplanted adult mouse pancreatic cells. Am. J. Pathol. 158, 571-579. - 102. Weiss, S., Dunne, C., Hewson, J., Wohl, C., Wheatley, M., Peterson, A.C., and Reynolds, B.A. (1996). Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis. J. Neurosci. 16, 7599-7609. - 103. Westfall, M.V., Pasyk, K.A., Yule, D.I., Samuelson, L.C., and Metzger, J.M. (1997). Ultrastructure and cell-cell coupling of cardiac myocytes differentiating in embryonic stem cell cultures. Cell. Motil. Cytoskeleton. 36, 43-54. - 104. Wiles, M.V. and Keller, G. (1991). Multiple hematopoietic lineages develop from embryonic stem (ES) cells in culture. Development. *111*, 259-267. - 105. Wobus, A.M., Rohwedel, J., Maltsev, V., and Hescheler, J. (1995). Development of cardiomyocytes expressing cardiac-specific genes, action potentials, and ionic channels during embryonic stem cell-derived cardiogenesis. Ann. N. Y. Acad. Sci. 752, 460-469. - Woodbury, D., Schwarz, E.J., Prockop, D.J., and Black, I.B. (2000). Adult rat and human bone marrow stromal cells differentiate into neurons. J. Neurosci. Res. 61, 364-370. - Yamane, T., Hayashi, H., Mizoguchi, M., Yamazaki, H., and Kunisada, T. (1999). Derivation of melanocytes from embryonic stem cells in culture. Dev. Dyn. 216, 450-458. - 108. Yamashita, J., Itoh, H., Hirashima, M., Ogawa, M., Nishikawa, S., Yurugi, T., Naito, M., Nakao, K., and Nishikawa, S. (2000). Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature. 408, 92-96. - 109. Zuk, P.A., Zhu, M., Mizuno, H., Huang, J., Futrell, J.W., Katz, A.J., Benhaim, P., Lorenz, H.P., and Hedrick, M.H. (2001). Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 7, 211-228. - 110. Zulewski, H., Abraham, E.J.,
Gerlach, M.J., Daniel, P.B., Moritz, W., Muller, B., Vallejo, M., Thomas, M.K., and Habener, J.F. (2001). Multipotential nestin-positive stem cells isolated from adult pancreatic islets differentiate ex vivo into pancreatic endocrine, exocrine, and hepatic phenotypes. Diabetes. 50, 521-533.